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A hyperbolicity notion for linear differential equations ẋ = A(t)x,
t ∈ [t−, t+], is defined which unifies different existing notions
like finite-time Lyapunov exponents (Haller, 2001, [13], Shadden
et al., 2005, [24]), uniform or M-hyperbolicity (Haller, 2001, [13],
Berger et al., 2009, [6]) and (t−, (t+ − t−))-dichotomy (Rasmussen,
2010, [21]). Its relation to the dichotomy spectrum (Sacker and Sell,
1978, [23], Siegmund, 2002, [26]), D-hyperbolicity (Berger et al.,
2009, [6]) and real parts of the eigenvalues (in case A is constant)
is described. We prove a spectral theorem and provide an approxi-
mation result for the spectral intervals.
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1. Introduction

Consider a linear nonautonomous differential equation on an interval I ⊆ R

ẋ(t) = A(t)x(t), t ∈ I, (1)

where A : I → R
d×d is a continuous matrix-valued function. Let Φ : I × I → R

d×d denote the evolution
operator of (1), i.e. Φ(·, s)ξ is the solution of (1) such that Φ(s, s)ξ = ξ for any s ∈ I and ξ ∈ R

d .
A projection-valued function P : I → R

d×d is called an invariant projector of (1) if for all t, s ∈ I

Φ(t, s)P (s) = P (t)Φ(t, s).
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Recall that for I =R, (1) is termed hyperbolic if it admits an exponential dichotomy (ED) [26], i.e. there
exist an invariant projector P : I → R

d×d and constants α,β > 0, K � 1 such that for all t, s ∈ I and
ξ ∈ R

d ,

∥∥Φ(t, s)P (s)ξ
∥∥� K e−α(t−s)‖ξ‖ for all t � s,∥∥Φ(t, s)

(
id − P (s)

)
ξ
∥∥� K eβ(t−s)‖ξ‖ for all t � s.

The dichotomy (or Sacker–Sell) spectrum of (1) is defined by

Σdich(A) := {γ ∈R: ẋ = [A(t) − γ id
]
x does not admit an ED

}
.

For linear skew-product flows the dichotomy spectrum was established in [23]. For system (1) with
I =R we have

Theorem 1. (See [26].) Assume that ‖Φ(t, s)‖ � K eα|t−s| for some K � 1, α > 0. Then the dichotomy spec-
trum Σdich(A) of (1) is the union of at most d non-empty disjoint compact (possibly one-point) intervals,
called spectral intervals, i.e.

Σdich(A) = [a1,b1] ∪ · · · ∪ [an,bn],

where n ∈ {1, . . . ,d}. Associated with the spectral intervals are uniquely determined sets W1, . . . ,Wn ⊂
R×R

d consisting of solutions of (1) (linear integral manifolds) satisfying

W1 ⊕ · · · ⊕Wn =R×R
d.

For system (1) on a compact (finite-time) interval I = [t−, t+] there have been introduced sev-
eral hyperbolicity notions. In Haller [13], analytic criteria for the existence of finite-time uniformly
attracting and repelling material surfaces were provided. Motivated by this work the notion of
M-hyperbolicity was introduced in Berger et al. [6]. M-hyperbolicity is based on monotonic growth
and decay of solutions. Another finite-time hyperbolicity notion is based on the EPH-partition in
Haller [12,14], see also Duc and Siegmund [10,9], which was extended in Berger et al. [4] and called
dynamic partition. To distinguish the different hyperbolicity notions, Berger et al. [4,5,3] later named
a solution D-hyperbolic, if it is hyperbolic in the sense of the dynamic partition. Rasmussen [21] intro-
duced (t−, T )-dichotomies for T = t+ − t− which define a type of hyperbolicity for ẋ = [A(t) − γ id]x
for certain γ ∈ R which turns out to be closely related to finite-time Lyapunov exponents (cp. Re-
mark 3 and Theorem 24).

The paper is organized as follows: In Section 2 we define the new hyperbolicity notion (Def-
inition 2) and observe in Remark 3 some of its basic properties. For reference we also recall
D-hyperbolicity. Section 3 is split into three parts. The first subsection is devoted to a spectral
theorem based on finite-time hyperbolicity. The main result (Theorem 10) shows – similar to the
statement in Theorem 1 – that the spectrum is the union of at most d disjoint compact intervals.
It generalizes results in [6, Theorem 17], [21, Theorem 4.13] and [8, Theorem 12]. In the second
subsection the relation between the spectrum based on finite-time hyperbolicity and the dichotomy
spectrum (Theorem 11), as well as the notion of D-hyperbolicity (Theorem 15), is clarified. The
constant coefficient case ẋ = Ax is treated as a special case (Corollary 13). The third subsection of
Section 3 addresses the issue of approximation of spectral intervals. Theorem 20 provides core in-
gredients for an algorithm to numerically compute the finite-time spectrum. In Section 4 we discuss
the established concept of finite-time Lyapunov exponents as a special case of finite-time spectrum
(Theorem 24).

We introduce some notions which are used in the paper. For a matrix M ∈ R
d×d let δ1(M), . . . ,

δd(M) denote its singular values.
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For a compact set J let | J | ∈N0 ∪ {∞} denote its cardinality and

ρ( J ) := inf
x,y∈ J , x�=y

|x − y|.

As usual, the Hausdorff distance between two compact sets I, J ⊂R is defined by

dH (I, J ) := max
{

d(I, J ),d( J , I)
}

with d(I, J ) := supx∈I infy∈ J |x − y|.
For j,d ∈ N, j � d, let G j,d denote the Grassmannian consisting of all subspaces in R

d of dimen-
sion j. We equip G j,d with the following metric

dG : G j,d × G j,d → R�0, dG(X, Y ) := ‖πX − πY ‖,

where πX , πY denote the orthogonal projections onto X and Y , respectively. (G j,d,dG) is a compact

metric space (see e.g. [7]). We denote by Gd :=⋃d
j=1 G j,d the set of all non-trivial subspaces of R

d .
Note that in [4,8] D-hyperbolicity is studied for J = I = [t−, t+].

2. Finite-time hyperbolicity

We define a new finite-time hyperbolicity notion for system (1) w.r.t. a compact subset J ⊂ I .

Definition 2 (Finite-time hyperbolicity). Let R
d be endowed with an arbitrary norm ‖ · ‖ and J a com-

pact subset of I with | J | � 2. System (1) is called finite-time hyperbolic with respect to the norm ‖ · ‖
and the set J if there exist an invariant projector P and constants α,β > 0 such that for all t, s ∈ J
with t � s

∥∥Φ(t, s)ξ
∥∥� e−α(t−s)‖ξ‖ for all ξ ∈ im P (s),∥∥Φ(t, s)ξ
∥∥� eβ(t−s)‖ξ‖ for all ξ ∈ ker P (s).

Remark 3. (i) Let J and J̃ be two compact subsets of I such that J̃ ⊂ J . Assume that system (1) is
finite-time hyperbolic with respect to J . Then (1) is also finite-time hyperbolic with respect to J̃ .

(ii) Suppose that J = {t1, . . . , tk} ⊂ I , where t1 < t2 < · · · < tk . Then system (1) is finite-time hy-
perbolic with respect to J if and only if there exists an invariant projector P such that for each
i ∈ {1, . . . ,k − 1} we have

∥∥Φ(ti+1, t1)ξ
∥∥<
∥∥Φ(ti, t1)ξ

∥∥ for all ξ ∈ im P (t1) \ {0},∥∥Φ(ti+1, t1)ξ
∥∥>
∥∥Φ(ti, t1)ξ

∥∥ for all ξ ∈ ker P (t1) \ {0}.

For k = 2 we get as a special case the definition of nonhyperbolic (t1, t2 − t1)-dichotomy as in [21].
(iii) In Section 4 we introduce finite-time Lyapunov exponents for system (1) given on I = [t−, t+].

All finite-time Lyapunov exponents of system (1) are non-zero if and only if (1) is finite-time hyper-
bolic with respect to J = {t−, t+} (see Theorem 24).

To conclude this section, we recall the notion of D-hyperbolicity which is a sufficient condition
for M-hyperbolicity [8, Corollary 22] (for more details see also [4,8]). For this purpose we consider
system (1) and assume additionally that A : I → R

d×d is differentiable and that the norm in R
d is

induced by a symmetric positive definite matrix Γ ∈ R
d×d , i.e. ‖x‖Γ = √〈x,Γ x〉 for x ∈ R

d . The sym-
metric matrix
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SΓ (t) := 1

2

[
Γ A(t) + A(t)�Γ

]
(2)

is called the Γ -strain tensor of Eq. (1) and describes for an arbitrary solution ξ : I → R
d of (1) the

instantaneous change of 1
2 ‖ξ‖2

Γ by

1

2

d

dt

∥∥ξ(t)
∥∥2

Γ
= 〈ξ(t), SΓ (t)ξ(t)

〉
.

Thus the Γ -strain tensor describes growth and decay of solutions ξ of (1) with respect to the
‖ · ‖Γ -norm. Clearly, all non-trivial solutions of (1) are strictly decreasing or increasing with respect
to the ‖ · ‖Γ -norm if SΓ (t) is negative or positive definite, respectively.

The set

ZΓ (t) := {ξ ∈ R
d:
〈
ξ, SΓ (t)ξ

〉= 0
}

is called the zero Γ -strain set of Eq. (1). It is a non-trivial cone if SΓ (t) has both positive and negative
eigenvalues. To describe the dynamical behavior of solutions of (1) starting in the set ZΓ (t), one
defines the so-called Γ -strain acceleration tensor

MΓ (t) := ṠΓ (t) + SΓ (t)A(t) + A(t)� SΓ (t),

which satisfies 1
2

d2

dt2 ‖ξ(t)‖2
Γ = 〈ξ(t), MΓ (t)ξ(t)〉. The restriction of the quadratic form ξ �→ 〈ξ, MΓ (t)ξ〉

to ZΓ (t) is denoted by M ZΓ (t). Based on [4, Definition 2.4] we say that for a compact set J ⊂ I

system (1) is D-hyperbolic on J if SΓ (t) is indefinite and non-degenerate, and M ZΓ (t) is positive
definite for all t ∈ J .

Similarly, (1) is called D-quasi-hyperbolic or D-elliptic if M ZΓ (t) is negative definite or indefinite, in-
stead of positive definite, respectively. System (1) is called D-attracting or D-repelling on J if SΓ (t) is
negative or positive definite, respectively, for all t ∈ J .

3. Finite-time spectrum

For γ ∈ R, we consider the shifted equation

ẋ(t) = [A(t) − γ id
]
x(t), (3)

and denote its evolution operator by Φγ : I × I → R
d×d . Note that Φγ (t, s) = e−γ (t−s)Φ(t, s) for all

t, s ∈ I .

Definition 4 (Finite-time spectrum). Let R
d be endowed with an arbitrary norm ‖ · ‖ and J a compact

subset of [t−, t+]. The finite-time spectrum of (1) with respect to J and ‖ · ‖ is the set

Σ J (A) = {γ ∈R: Eq. (3) is not finite-time hyperbolic w.r.t. J and ‖ · ‖},
and the complement ρ J (A) = R \ Σ J (A) is called finite-time resolvent set of (1) with respect to J
and ‖ · ‖.

In the next part of this section, we establish a spectral theorem which characterizes the finite-time
spectrum by extremal growth rates. Later, we formulate some asymptotic and instantaneous aspects
of the finite-time spectrum. The remaining part is devoted to present an approximation result for
finite-time spectral intervals.
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3.1. A spectral theorem for finite-time differential equations

Definition 5 (Growth rates). Let X ∈ Gd and J a compact subset of I . Set t1 := min J . We call

λ( J , X) := sup
{
α ∈R

∣∣ ∀ξ ∈ X : t �→ e−αt
∥∥Φ(t, t1)ξ

∥∥ is increasing on J
}
,

and

λ( J , X) := inf
{
α ∈R

∣∣ ∀ξ ∈ X : t �→ e−αt
∥∥Φ(t, t1)ξ

∥∥ is decreasing on J
}
,

respectively, the lower and upper growth rate of X (or the integral manifold induced by X ) with respect
to J . We extend the definition by λ( J , {0}) = +∞ and λ( J , {0}) = −∞ in a natural way.

In the case that J is finite, explicit expressions for the lower and upper growth rates of an X ∈ Gd
are given as follows.

Remark 6. Let X ∈ Gd . Suppose that J = {t1, . . . , tk} ⊂ I , where t1 < t2 < · · · < tk . Then

λ( J , X) = inf
ξ∈X∩Sd−1

min
i∈{1,...,k−1}

1

ti+1 − ti
log

‖Φ(ti+1, t1)ξ‖
‖Φ(ti, t1)ξ‖ ,

λ( J , X) = sup
ξ∈X∩Sd−1

max
i∈{1,...,k−1}

1

ti+1 − ti
log

‖Φ(ti+1, t1)ξ‖
‖Φ(ti, t1)ξ‖ .

We now introduce the notion of extremal growth rates which play an important role in determin-
ing the spectrum.

Definition 7 (Extremal k-dimensional growth rates). For k ∈ {0, . . . ,d}, the numbers λ(k)( J ) and λ(k)( J )
defined by

λ(k)( J ) := sup
X∈Gk,d

λ( J , X), and λ(k)( J ) := inf
X∈Gk,d

λ( J , X), (4)

are called, respectively, the maximal k-dimensional lower growth rate and the minimal k-dimensional
upper growth rate of (1) with respect to the compact set J ⊂ I . Note that λ(0)( J ) = +∞ and
λ(0)( J ) = −∞, according to Definition 5.

The question if there exist subspaces realizing the maximal lower and minimal upper growth
rates arises naturally. In order to answer this question we introduce the following functions: For each
k ∈ {0,1, . . . ,d}, the lower and upper growth rate functions λ(k)( J , ·), λ(k)( J , ·) : Gk,d → R are defined
by

λ(k)( J , X) := λ( J , X), λ(k)( J , X) := λ( J , X).

Lemma 8. For each k ∈ {0, . . . ,d} and compact set J ⊂ I , the lower growth rate function λ(k)( J , ·) is upper
semi-continuous and the upper growth rate function λ(k)( J , ·) is lower semi-continuous.

Proof. Analogous to the proof of [8, Lemma 7]. �
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Remark 9. (i) Lemma 8 in combination with the compactness of the metric space (Gk,d,dG) implies
that there exists X ∈ Gk,d such that λ( J , X) = λ(k)( J ). We also say that X realizes the maximal lower
growth rate λ(k)( J ). Similarly, there exists Y ∈ Gk,d realizing the minimal upper growth rate λ(k)( J ).

(ii) The subspaces realizing the maximal and minimal growth rates need not be unique, see e.g. [6,
Example 27].

The dichotomy spectrum of system (1) for I = R is the union of at most d disjoint, non-empty in-
tervals and in case the solutions are exponentially bounded those intervals are compact (Theorem 1).
The following theorem states that for system (1) on an arbitrary interval I ⊂ R the finite-time spec-
trum with respect to an arbitrary norm and a compact set J ⊂ I has the same property. Moreover,
based on the maximal lower and minimal upper growth rates an explicit expression for Σ J is given.
This result generalizes [6, Theorem 17], [21, Theorem 4.13] and [8, Theorem 10].

Theorem 10 (Finite-time spectral intervals). Let J be a compact subset of I and R
d be endowed with an

arbitrary norm. The spectrum Σ J (A) of (1) is the union of at most d disjoint, non-empty intervals (called
spectral intervals), i.e.

Σ J (A) =
n⋃

=1

[a,b],

where n ∈ {1, . . . ,d} and −∞ < a1 � b1 < a2 � b2 < · · · < an � bn < +∞. Moreover, let Λ := {i0, . . . , in},
0 = i0 < · · · < in = d, be the set of all indices j ∈ {0, . . . ,d} satisfying λ( j)( J ) < λ(d− j)( J ). Then, for each
k ∈ {1, . . . ,n}

ak = λ(d−ik−1)( J ), bk = λ(ik)( J ).

Proof. Set t1 := min J . By (4) and Definition 5, the sequence of minimal upper growth rates
(λ(k)( J ))k∈{0,...,d} is increasing and the sequence of maximal lower growth rates (λ(k)( J ))k∈{0,...,d} is
decreasing. Furthermore, for each k ∈ {0, . . . ,d} one has λ(d−k+1)( J ) � λ(k)( J ). As a consequence, we
get for  �= k (

λ(i)( J ), λ(d−i)( J )
)∩ (λ(ik)( J ), λ(d−ik)( J )

)= ∅. (5)

We now show that

ρ J (A) =
n⋃

k=0

(
λ(ik)( J ), λ(d−ik)( J )

)
. (6)

For this purpose, let γ ∈ (λ(ik)( J ), λ(d−ik)( J )) for some k ∈ {0,1, . . . ,n}. Consider the corresponding
shifted equation

ẋ(t) = [A(t) − γ id
]
x(t). (7)

By (4), there exist subspaces W s and Wu of dimension ik and d − ik , respectively, and α > 0 such that

λ( J , W s)� γ − α, λ( J , Wu) � γ + α.

Therefore, the function t �→ e−(γ −α)t‖Φ(t, t1)ξ‖ = eαt‖Φγ (t, t1)ξ‖e−γ t1 is decreasing on J for all
ξ ∈ W s . Similarly, the function

t �→ e−(γ +α)t
∥∥Φ(t, t1)ξ

∥∥= e−αt
∥∥Φγ (t, t1)ξ

∥∥e−γ t1
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is increasing on J for all ξ ∈ W u . Thus, system (7) is hyperbolic with respect to the set J . Conversely,
let γ ∈ ρ J (A) and suppose that system (7) is hyperbolic with respect to the set J with an invariant
projector P : I → R

d×d . Then there exists α > 0 such that for all t, s ∈ J with t � s and all ξ ∈ ker P (t1)∥∥Φγ (t, t1)ξ
∥∥� eα(t−s)

∥∥Φγ (s, t1)ξ
∥∥.

Consequently, λ(d−k)( J )� λ( J ,ker P (t1)) � α +γ , where k := dim im P (t1). Similarly, we get λ(k)( J ) �
γ − α. Thus γ ∈ (λ(k)( J ), λ(d−k)( J )) and hence (6) is proved. This together with (5) implies that

Σ J (A) =
n⋃

=1

[
λ(d−i−1)( J ), λ(i)( J )

]
,

which completes the proof. �
3.2. Relation to dichotomy spectrum and D-hyperbolicity

In this subsection we study the dependence of Σ J (A) on J ⊂ I . In the first case we investigate
the asymptotic relation of Σ J (A) to the dichotomy spectrum Σdich(A) on I =R by increasing ρ( J ) to
infinity, in the second case we decrease ρ( J ) to zero and get a relation of Σ J (A) to the instantaneous
growth rates of solutions described by the Γ -strain tensor SΓ (t0) which is used for the definition of
D-hyperbolicity.

Theorem 11 (Relation to dichotomy spectrum). Suppose that system (1) is defined on the whole real line R

and its evolution operator Φ(·,·) has bounded growth, i.e. there exist K � 1 and α > 0 such that ‖Φ(t, s)‖ �
K eα|t−s| for any t, s ∈ R. Let ( Jm)m∈N be a sequence of finite sets, i.e. | Jm| < ∞ for each m ∈ N, such that
limm→∞ ρ( Jm) = ∞. Then

lim
m→∞d

(
Σ Jm (A),Σdich(A)

)= 0, (8)

where Σdich(A) is the dichotomy spectrum of (1) on R. Furthermore, if Σdich(A) is a discrete set then

lim
m→∞dH

(
Σ Jm (A),Σdich(A)

)= 0.

Proof. According to Theorem 1, the dichotomy spectrum of (1) on R has the following form

Σdich(A) = [a1,b1] ∪ · · · ∪ [an,bn],

where n ∈ {1, . . . ,d} and a1 � b1 < · · · < an � bn . Choose ε > 0 such that ε � ak+1−bk
2 for each k ∈

{1, . . . ,n − 1}. Then there exist integral manifolds W1, . . . ,Wn ⊂ R×R
d with

⊕n
=1 W = R×R

d and
a constant K � 1 such that for all k ∈ {1, . . . ,n} and t � s

∥∥Φ(t, s)ξ
∥∥� 1

K
e(ak− ε

4 )(t−s)‖ξ‖ for all ξ ∈
n⊕

=k

W(s), (9)

∥∥Φ(t, s)ξ
∥∥� K e(bk+ ε

4 )(t−s)‖ξ‖ for all ξ ∈
k⊕

=1

W(s). (10)

For  ∈ {1, . . . ,n} let d := dimW and ik :=∑k
=1 d , then in =∑n

=1 d = d. Since limm→∞ ρ( Jm) =
∞ there exists N(ε) ∈ N such that | log K

ρ( J )
| � ε

4 for all m � N(ε). Choose m ∈ N, m > N(ε), and let

m
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Jm = {t1, . . . , tq} with t1 < · · · < tq . By the nesting property of the growth rates, shown in the first
part of the proof of Theorem 10, the assertion is proved if we can show that for any k ∈ {1, . . . ,n} we
have

ak − ε

2
� λ(d−ik−1)( Jm) and λ(ik)( Jm) � bk + ε

2
. (11)

To this end, let X =⊕n
=k W(t1) ∈ Gd−ik−1,d and ξ ∈ X ∩Sd−1. By (9) we have for all p ∈ {1, . . . ,q−1}

1

tp+1 − tp
log

‖Φ(tp+1, t1)ξ‖
‖Φ(tp, t1)ξ‖ = 1

tp+1 − tp
log

‖Φ(tp+1, tp)Φ(tp, t1)ξ‖
‖Φ(tp, t1)ξ‖

� 1

tp+1 − tp
log

e(ak− ε
4 )(tp+1−tp)

K

� ak − ε

4
− log K

ρ( Jm)

� ak − ε

2
.

By virtue of Remark 6 and Definition 7 we get that

ak − ε

2
� λ(X, Jm)� λ(d−ik−1)( Jm).

Similarly, we have λ(ik) � bk + ε
2 for k ∈ {1,2, . . . ,n} and (11) is proved. Combining (11) and Theo-

rem 10, we obtain

d
(
Σ Jm (A),Σdich(A)

)
� ε

2
,

which proves (8). In the special case that Σdich(A) is a discrete set, we have ai = bi for i = 1, . . . ,n.
Hence, when we replace the semi-distance d by the Hausdorff distance dH in (8) then this statement
remains true. The proof is complete. �

The following scalar system provides an example for the fact that if we replace the semi-distance d
by the Hausdorff distance in (8), then this statement is in general not true.

Example 12. Consider the following linear nonautonomous scalar differential equation

ẋ(t) =
[

sin
(
ln
(
1 + t2))+ 2t2

1 + t2
cos
(
ln
(
1 + t2))]x(t). (12)

The associated evolution operator is given by

Φ(t, s) = et sin(ln(1+t2))−s sin(ln(1+s2)) for all t, s ∈R.

Then the dichotomy spectrum is given by Σdich = [−1,1]. Define Jm := {−m,m} for each m ∈ N.
Clearly, limm→∞ ρ( Jm) = ∞. By virtue of Theorem 10, the finite-time spectrum Σ Jm is a singleton set
given by

Σ Jm =
{

1

2m
logΦ(m,−m)

}
= {sin

(
ln
(
1 + m2))} for all m ∈ N,
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which proves that

dH (Σdich,Σ Jm ) � 1

2
for all m ∈N.

In the special case of an autonomous system ẋ = Ax with A ∈ R
d×d the dichotomy spectrum con-

sists of the real parts of the eigenvalues of A, i.e. Σdich(A) = Re[σ(A)] := {Re(λ): λ ∈ σ(A)} where
σ(A) denotes the spectrum of A (see e.g. [23,26]). The finite-time spectrum of ẋ = Ax w.r.t. a com-
pact set J ⊂ R does not necessarily coincide with Re[σ(A)]. In [21], however, it is proved (cp. also
Remark 3(ii) for the relation between the hyperbolicity notion suggested in [21] and ours) that for
t, T ∈ R and the two-point set J = {t, T }

lim
T →∞ dH

(
Σ{t,T }(A),Re

[
σ(A)

])= 0.

As a corollary to Theorem 11 we can extend this approximation result to the finite-time spectrum of
ẋ = Ax.

Corollary 13 (Relation to real parts of the eigenvalues). For A ∈ R
d×d consider the autonomous system

ẋ(t) = Ax(t).

Let ( Jm)m∈N be a sequence of finite sets such that limm→∞ ρ( Jm) = ∞. Then,

lim
m→∞dH

(
Σ Jm (A),Re

[
σ(A)

])= 0.

The remaining part of this subsection is devoted to relate Σ Jm (A) for ρ( J ) → 0 to the instanta-
neous growth rates of solutions described by the Γ -strain tensor (2) which is used for the definition
of D-hyperbolicity. For this purpose, we need the following preparatory lemma which relates the evo-
lution operator Φ(t, s) of (1) for a given ‖ · ‖Γ -norm to its Γ -strain tensor. Recall that δk(M) denotes
the k-th singular value of a matrix M , which is identical to the k-th eigenvalue in case M is symmet-
ric.

Lemma 14. For any t0 ∈ I the following statements hold:

(i) For any ξ ∈ R
d \ {0}, we have

lim
t,s→t0

1

t − s
log

‖Φ(t, s)ξ‖Γ

‖ξ‖Γ

= 〈ξ, SΓ (t0)ξ〉
‖ξ‖2

Γ

.

(ii) For any k ∈ {1, . . . ,d}, we have

lim
t,s→t0

1

t − s
log δk

(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)= 2δk

(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)
.

Proof. (i) Integrating Eq. (1) yields Φ(t, s) = id + ∫ t
s A(u)Φ(u, s)du, and one has Φ(t, s) = id +

(t − s)A(t0) + ∫ t
s A(u)Φ(u, s) − A(t0)du, such that

Φ(t, s) = id + (t − s)A(t0) + o(t − s) as t, s → t0.
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Consequently, we obtain that

lim
t,s→t0

1

t − s
log

‖Φ(t, s)ξ‖Γ

‖ξ‖Γ

= lim
t,s→t0

1

2(t − s)
log

〈Φ(t, s)ξ,Γ Φ(t, s)ξ〉
〈ξ,Γ ξ〉

= lim
t,s→t0

1

2(t − s)
log

(
1 + 2(t − s)

〈ξ, SΓ (t0)ξ〉
‖ξ‖2

Γ

+ o(t − s)

)
= 〈ξ, SΓ (t0)ξ〉

‖ξ‖2
Γ

.

(ii) Using the Courant–Fischer Min–max Theorem (see e.g. [11])

δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)= max

X∈Gk,d

min
ξ∈X\{0}

〈ξ,Γ − 1
2 SΓ (t0)Γ

− 1
2 ξ〉

〈ξ, ξ〉

= max
X∈Gk,d

min
ξ∈X\{0}

〈ξ, SΓ (t0)ξ〉
〈ξ,Γ ξ〉 .

Let Xk ∈ Gk,d such that

δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)= min

ξ∈Xk\{0}
〈ξ, SΓ (t0)ξ〉

〈ξ,Γ ξ〉 .

Similarly, using the Courant–Fischer Min–max Theorem we also have

log δk
(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)= max

X∈Gk,d

min
ξ∈X\{0} log

‖Φ(t, s)ξ‖2
Γ

‖ξ‖2
Γ

.

Consequently, we have

log δk
(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)= − log δk

(
Γ − 1

2 Φ(s, t)�Γ Φ(s, t)Γ − 1
2
)

and

log δk
(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)
� 2 min

ξ∈Xk\{0} log
‖Φ(t, s)ξ‖Γ

‖ξ‖Γ

,

which together with part (i) implies that

lim inf
t,s→t0

1

t − s
log δk

(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)

= lim inf
t,s→t0, t>s

1

t − s
log δk

(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)

� 2 lim inf
t,s→t0, t>s

min
ξ∈Xk\{0}

1

t − s
log

‖Φ(t, s)ξ‖Γ

‖ξ‖Γ

� 2 min
ξ∈Xk\{0} lim inf

t,s→t0, t>s

1

t − s
log

‖Φ(t, s)ξ‖Γ

‖ξ‖Γ

� 2δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)
.
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On the other hand, using the Courant–Fischer Min–max Theorem we have

δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)= min

X∈Gd−k,d

max
ξ∈X\{0}

〈ξ, SΓ (t0)ξ〉
〈ξ,Γ ξ〉 .

Let Xd−k ∈ Gd−k,d such that

δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)= max

ξ∈Xd−k\{0}
〈ξ, SΓ (t0)ξ〉

〈ξ,Γ ξ〉 .

In view of the Courant–Fischer Min–max Theorem and (i), we get

lim sup
t,s→t0

1

t − s
log δk

(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)

= lim sup
t,s→t0, t>s

1

t − s
log δk

(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)

� lim sup
t,s→t0, t>s

max
ξ∈Xd−k\{0}

1

t − s
log

〈ξ,Φ(t, s)�Γ Φ(t, s)ξ〉
〈ξ,Γ ξ〉

� 2 max
ξ∈Xd−k\{0} lim sup

t,s→t0, t>s

1

t − s
log

‖Φ(t, s)ξ‖Γ

‖ξ‖Γ

= 2δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)
.

Hence,

lim
t,s→t0

1

t − s
log δk

(
Γ − 1

2 Φ(t, s)�Γ Φ(t, s)Γ − 1
2
)= 2δk

(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)
,

which completes the proof. �
Theorem 15 (Relation to Γ -strain tensor). Let Rd be endowed with ‖ · ‖Γ -norm, where Γ is a symmetric
positive definite matrix in R

d×d. The following statements hold:

(i) Let J be a compact subset of I and t ∈ I an accumulation point of J . Then, for all k ∈ {1, . . . ,d} we
have

λ(k)( J ) � δk
(
Γ − 1

2 SΓ (t)Γ − 1
2
)
, λ(k)( J ) � δd−k

(
Γ − 1

2 SΓ (t)Γ − 1
2
)
.

(ii) Let ( Jm)m∈N be a sequence of compact subsets of I with | Jm| � 2 for each m ∈ N which converges to
t0 ∈ I , i.e. limm→∞ dH ( Jm, {t0}) = 0. Then in the sense of Hausdorff distance one has

lim
m→∞ΣA( Jm) = {δ1

(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)
, . . . , δd

(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)}

.

Proof. (i) Define t1 = min J . Since t is a limit point of J , there exists a sequence (tn)n∈N ⊂ J such
that

lim tn = t and |tn+1 − t|� |tn − t| for n ∈N.

n→∞
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Fix k ∈ {1, . . . ,d}. From Definition 7, we derive that

λ(k)( J ) � λ(k)
({tn, tn+1}

)
for all n ∈N. (13)

By virtue of Remark 6 and Definition 7, we have

λ(k)
({tn, tn+1}

)= sup
X∈Gk,d

inf
ξ∈X\{0}

1

tn+1 − tn
log

‖Φ(tn+1, t1)ξ‖Γ

‖Φ(tn, t1)ξ‖Γ

.

To simplify the notation, define M := Γ − 1
2 Φ(tn+1, tn)�Γ Φ(tn+1, tn)Γ − 1

2 . Let X ∈ Gk,d be an arbitrary
subspace of dimension k and ξ1, . . . , ξd denote the eigenvectors of M corresponding to the eigenvalues
δ1(M), . . . , δd(M), respectively. Since dim X = k it follows that there exists a non-zero vector ξ such

that Γ
1
2 ξ ∈ Φ(tn, t1)

−1 X ∩ span{ξk, . . . , ξd}. Thus, Γ
1
2 ξ is of the form Γ

1
2 ξ = αkξk + · · · + αdξd with

α2
k + · · · + α2

d �= 0. Consequently,

λ(k)
({tn, tn+1}, X

)
� 1

2(tn+1 − tn)
log

‖Φ(tn+1, tn)ξ‖2
Γ

‖ξ‖2
Γ

= 1

2(tn+1 − tn)
log

∑d
i=k δk(M)α2

k ‖ξi‖2
2∑d

i=k α2
i ‖ξi‖2

2

� 1

2(tn+1 − tn)
log δk(M),

which together with Lemma 14 and (13) proves that

λ(k)( J ) � δk
(
Γ − 1

2 SΓ (t)Γ − 1
2
)
.

Similarly, we have λ(k)( J ) � δd−k(Γ
− 1

2 SΓ (t)Γ − 1
2 ) and the proof of part (i) is complete.

(ii) According to Theorem 10, it is sufficient to show that

lim
m→∞λ(k)( Jm) = δk

(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)
. (14)

For this purpose, we choose X = Γ − 1
2 span{ξ1, . . . , ξk}, where ξ1, . . . , ξd are eigenvectors of the matrix

Γ − 1
2 SΓ (t0)Γ

− 1
2 corresponding to eigenvalues δ1(Γ

− 1
2 SΓ (t0)Γ

− 1
2 ), . . . , δd(Γ

− 1
2 SΓ (t0)Γ

− 1
2 ), respec-

tively. According to Lemma 14(i), for all ξ ∈ X \ {0} we obtain

lim
t,s→t0

1

t − s
log

‖Φ(t, s)ξ‖Γ

‖ξ‖Γ

= 〈ξ, SΓ (t0)ξ〉
‖ξ‖2

Γ

= 〈Γ 1
2 ξ,Γ − 1

2 SΓ (t0)Γ
− 1

2 Γ
1
2 ξ〉

〈Γ 1
2 ξ,Γ

1
2 ξ〉

� δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)
,

this implies together with the fact that limm→∞ dH ( Jm, {t0}) = 0 that there exists N ∈N such that for
all m � N the following inequality

1
log

‖Φ(t, s)ξ‖Γ � δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)− ε
t − s ‖ξ‖Γ
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holds for all t, s ∈ Jm and ξ ∈ X \ {0}. This together with Definition 5 gives that

λ(k)( Jm) � δk
(
Γ − 1

2 SΓ (t0)Γ
− 1

2
)− ε for all m � N.

This together with part (i) proves (14) and the proof is complete. �
3.3. Approximation of the finite-time spectrum

In view of Theorem 10 to compute the finite-time spectrum of a given nonautonomous differential
equation we need to compute the extremal growth rates associated with this system. The rest of
this section is devoted to provide a general approximation scheme to compute these extremal growth
rates. For this purpose, we need to prove the following things:

1. The extremal growth rates of the discretization converge to the ones of the given system (for
converging time-sets), see Theorem 17.

2. The extremal growth rates of the approximation of the evolution operator converge to the exact
extremal growth rates (for converging approximation error), see Theorem 19.

Before we state and prove the convergence results listed above, we discuss in the following remark
an explicit bound of the finite-time spectrum.

Remark 16. For all t, s ∈ I using the variation of constant formula Φ(t, s)ξ = ξ + ∫ t
s A(u)Φ(u, s)ξ du,

we obtain ‖Φ(t, s)ξ‖ � ‖ξ‖ + a
∫ t

s ‖Φ(u, s)ξ‖du, where a := maxt∈I ‖A(t)‖. Using Gronwall’s inequal-
ity, we get that for all t, s ∈ I ∥∥Φ(t, s)ξ

∥∥� ea|t−s|‖ξ‖, ξ ∈R
d,

which also implies that for all t, s ∈ I∥∥Φ(t, s)ξ
∥∥� e−a|t−s|‖ξ‖, ξ ∈R

d.

Therefore, Σ J (A) ⊆ [−a,a] for all compact subsets J ⊆ I .

Theorem 17. Let J be a compact subset of I . Let ( Jm)m∈N be a sequence of compact subsets of J satisfying
limm→∞ dH ( Jm, J ) = 0. Then, for all j ∈ {1, . . . ,d} we have

lim
m→∞λ( j)( Jm) = λ( j)( J ) and lim

m→∞λ( j)( Jm) = λ( j)( J ). (15)

Consequently,

lim
m→∞dH

(
Σ Jm (A),Σ J (A)

)= 0.

Proof. Define

t1 := min J , and t(m)
1 := min Jm for all m ∈N.

From limm→∞ dH ( Jm, J ) = 0, we derive that limm→∞ t(m)
1 = t1. For each m ∈ N, since Jm ⊂ J it follows

together with Definitions 5 and 7 that

λ( j)( Jm) � λ( j)( J ) and λ( j)( Jm)� λ( j)( J ).
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Hence, to obtain (15) it is sufficient to prove that for all j ∈ {1,2, . . . ,d}

lim sup
m→∞

λ( j)( Jm)� λ( j)( J ) and lim inf
m→∞ λ( j)( Jm) � λ( j)( J ). (16)

For this purpose, let (Xm)m∈N be a sequence in G j,d satisfying λ( Jm, Xm) = λ( j)( Jm) =: αm . Suppose
there exists δ > 0 such that α := λ( j)( J ) < lim supm→∞ αm − δ. Taking subsequences, if necessary,
we assume that limm→∞ Xm = X ∈ G j,d and limm→∞ αm > α + δ. Choose arbitrary s, t ∈ J with
s < t and ξ ∈ X \ {0}. By limm→∞ dH ( Jm, J ) = 0 and limm→∞ dG(X, Xm) = 0, there exist sequences
(sm)m∈N, (tm)m∈N, (ξm)m∈N satisfying sm, tm ∈ Jm with sm � tm , ξm ∈ Xm and

lim
m→∞ sm = s, lim

m→∞ tm = t, lim
m→∞ ξm = ξ.

By Definition 5, we get for all m ∈ N∥∥Φ(tm, t(m)
1

)
ξm
∥∥� eαm(tm−sm)

∥∥Φ(sm, t(m)
1

)
ξm
∥∥.

In the limit for m → ∞ we get ∥∥Φ(t, t1)ξ
∥∥� e(α+δ)(t−s)

∥∥Φ(s, t1)ξ
∥∥,

which implies together with Definition 5 that λ( J , X)� α+δ and contradicts to Definition 7. Similarly,
we have lim infm→∞ λ( j)( Jm) � λ( j)( J ) for each j ∈ {1, . . . ,d}. So, (16) is proved and the proof is
complete. �

We now provide an example to illustrate that the condition that Jm is a subset of J for all m ∈ N

is necessary in Theorem 17.

Example 18. Consider the scalar differential equation on [0,1]

ẋ(t) = a(t)x(t),

where a : [0,1] → R is a continuous function. Set J := {0,1} and Jm := {0,1 − 1
m ,1}. Clearly,

limm→∞ dH ( Jm, J ) = 0. An elementary computation yields that

Σ J (a) =
{ 1∫

0

a(t)dt

}
,

lim
m→∞Σ Jm (a) =

[
min

{ 1∫
0

a(t)dt,a(1)

}
,max

{ 1∫
0

a(t)dt,a(1)

}]
.

Thus, if
∫ 1

0 a(t)dt �= a(1) then limm→∞ dH (Σ J ,Σ Jm ) �= 0. An explicit function a satisfying this condi-
tion is a = id[0,1] .

Theorem 19. Consider system (1) on a compact interval I ⊆R. Let J = {t1, . . . , tk} with t1 < t2 < · · · < tk be
a subset of I . Set

a := max
t∈I

∥∥A(t)
∥∥, � := min

i∈{1,...,k−1}
ti+1 − ti, T := t+ − t−.
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Let Ψ2, . . . ,Ψk ∈ R
d×d be invertible matrices, set Ψ1 = id ∈ R

d×d. For j ∈ {1, . . . ,d}, we define

λ
( j)
approx( J ) := sup

X∈G j,d

inf
ξ∈X∩Sd−1

min
i∈{1,...,k−1}

1

ti+1 − ti
log

‖Ψi+1ξ‖
‖Ψiξ‖ (17)

and

λ
( j)
approx( J ) := inf

X∈G j,d

sup
ξ∈X∩Sd−1

max
i∈{1,...,k−1}

1

ti+1 − ti
log

‖Ψi+1ξ‖
‖Ψiξ‖ . (18)

Let ε > 0 and δ < εe−aT min{ 1
2 , �

3 }. Then∥∥Ψn − Φ(tn, t1)
∥∥< δ for each n ∈ {2, . . . ,k} (19)

implies ∣∣λ( j)
approx( J ) − λ( j)( J )

∣∣< ε and
∣∣λ( j)

approx( J ) − λ( j)( J )
∣∣< ε. (20)

Proof. Let ξ ∈ Sd−1, i ∈ {1, . . . ,k − 1} and ε > 0. Using (19), we obtain that

log
‖Φ(ti+1, t1)ξ‖
‖Φ(ti, t1)ξ‖ − log

‖Ψi+1ξ‖
‖Ψiξ‖ = log

‖Φ(ti+1, t1)ξ‖
‖Ψi+1ξ‖ − log

‖Ψiξ‖
‖Φ(ti, t1)ξ‖

� log
‖Φ(ti+1, t1)ξ‖

‖Φ(ti+1, t1)ξ‖ − δ
+ log

‖Φ(ti, t1)ξ‖ + δ

‖Φ(ti, t1)ξ‖ .

By virtue of Remark 16, we get that ‖Φ(ti, t1)ξ‖ � e−a(ti−t1) � e−aT . Hence,

log
‖Φ(ti+1, t1)ξ‖
‖Φ(ti, t1)ξ‖ − log

‖Ψi+1ξ‖
‖Ψiξ‖ � log

(
1 + δ

e−aT − δ

)
+ log

(
1 + δ

e−aT

)
.

Consequently, for all j ∈ {1, . . . ,d} we get

λ( j)( J ) − λ
( j)
approx �

1

�

[
log

(
1 + δ

e−aT − δ

)
+ log

(
1 + δ

e−aT

)]
.

By using the obvious inequality log(1 + x)� x for all x ∈ [0,∞), we obtain

λ( j)( J ) − λ
( j)
approx �

δeaT

�

(
1

1 − δeaT
+ 1

)
<

3eaT

�
δ < ε,

for δ < εe−aT min{ 1
2 , �

3 }. The above argument applies equally well when interchanging Φ and Ψ , such
that we get ∣∣λ( j)( J ) − λ

( j)
approx

∣∣< ε

in case of (19) with δ < εe−aT min{ 1
2 , �

3 }, which proves the first part of (20). Analogously, we get the
second part of (20) and the proof is complete. �

By combining Theorems 17 and 19, we are now in a position to state our final approximation
result for the extremal growth rates.
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Theorem 20. Consider system (1) on a compact interval I ⊆ R, let J ⊆ I be compact, ε > 0 and set a :=
maxt∈I ‖A(t)‖ and T := t+−t− . Let ( Jm)m∈N be a sequence of finite subsets of J with limm→∞ dH (I, Jm) = 0,
where | Jm| = km, Jm = {t−, tm,2, . . . , tm,km }, �m := ρ( Jm) and εm := �m

3eaT ε. For each m ∈ N let Ψm,2, . . . ,

Ψm,km be εm-approximations of Φ(tm,2, t−), . . . ,Φ(tm,km , t−) in the sense of (19). Then the following limit
inequalities hold: ∣∣∣λ( j)( J ) − lim

m→∞λ
( j)
approx( Jm)

∣∣∣, ∣∣∣λ( j)( J ) − lim
m→∞λ

( j)
approx( Jm)

∣∣∣� ε.

Theorem 20 provides an approximation result for the spectral growth rates λ( j)( J ) and λ( j)( J ) if
J is approximated by Jm and the evolution operator Φ is only available approximately. For a numeri-
cal implementation one needs to also address the question of computing the growth rates λ

( j)
approx( Jm)

and λ
( j)
approx( Jm). The following remark provides the answer of this question for planar systems which

are endowed with the Euclidean norm ‖ · ‖2 = ‖ · ‖id and Jm consists of equidistant grid points.

Remark 21. Consider Theorem 19 for d = 2 with approximating matrices Ψ2, . . . ,Ψk ∈ R
2×2 as in (19)

and the points in J = {t1, . . . , tk} are equidistant. To compute λ
( j)
approx( J ) and λ

( j)
approx( J ) using for-

mulas (17) and (18), we first observe that if there exist i, j ∈ {1, . . . ,k − 1}, i �= j, such that for all

ξ ∈ R
2 \ {0} the equality 1

ti+1−ti
log ‖Ψi+1ξ‖2

‖Ψiξ‖2
= 1

t j+1−t j
log

‖Ψ j+1ξ‖2
‖Ψ jξ‖2

holds, then one can w.l.o.g. remove

either i or j from {1, . . . ,k − 1} without changing the value of (17) and (18). Hence we can assume
that for each i, j ∈ {1, . . . ,k − 1}, i �= j, there exists ξ ∈R

2 \ {0} such that

1

ti+1 − ti
log

‖Ψi+1ξ‖2

‖Ψiξ‖2
�= 1

t j+1 − t j
log

‖Ψ j+1ξ‖2

‖Ψ jξ‖2
.

Under this assumption, the equation log ‖Ψi+1ξ‖2
‖Ψiξ‖2

= log
‖Ψ j+1ξ‖2
‖Ψ jξ‖2

can be solved as

‖Ψi+1ξ‖2
2‖Ψ jξ‖2

2 − ‖Ψ j+1ξ‖2
2‖Ψiξ‖2

2 = 0.

As a consequence, the set

M :=
k−1⋃

i, j=1, i �= j

{
ξ ∈ S1:

1

ti+1 − ti
log

‖Ψi+1ξ‖2

‖Ψiξ‖2
= 1

t j+1 − t j
log

‖Ψ j+1ξ‖2

‖Ψ jξ‖2

}

contains at most 4(k − 1)(k − 2) elements. Define

λ := max
ξ∈M min

i∈{1,...,k−1}
1

ti+1 − ti
log

‖Ψi+1ξ‖
‖Ψiξ‖ ,

λ := min
ξ∈M max

i∈{1,...,k−1}
1

ti+1 − ti
log

‖Ψi+1ξ‖
‖Ψiξ‖ .

Let

J∗ := { j ∈ {1, . . . ,k}: δ1
(
Ψ j+1Ψ

−1
j

) �= δ2
(
Ψ j+1Ψ

−1
j

)}
.

For j ∈ J∗ , define ξ1, j, ξ2, j ∈R
2 with ‖ξ1, j‖ = ‖ξ2, j‖ = 1 such that∥∥Ψ j+1Ψ

−1
j ξ1, j

∥∥ = δ1
(
Ψ j+1Ψ

−1
j

)
,

∥∥Ψ j+1Ψ
−1
j ξ2, j

∥∥ = δ2
(
Ψ j+1Ψ

−1
j

)
.
2 2
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Using the fact that

sup
ξ∈S1

‖Aξ‖2

‖ξ‖2
= δ1(A),

we observe that for j ∈ J∗ the unique vector ξ with ‖Ψ jξ‖2 = 1 which solves the optimization prob-
lem

max
ξ∈S1

1

t j+1 − t j

‖Ψ j+1ξ‖2

‖Ψ jξ‖2

is given by ξ = Ψ −1
j ξ1, j . Analogously, the unique vector ξ with ‖Ψ jξ‖2 = 1 which realizes the opti-

mization problem

min
ξ∈S1

1

t j+1 − t j

‖Ψ j+1ξ‖2

‖Ψ jξ‖2

is given by ξ = Ψ −1
j ξ2, j . These facts, together with a simple but technical computation, lead to the

following formulas to compute λ
( j)
approx( J ) and λ

( j)
approx( J ):

• Computation of λ
(1)
approx( J ):

λ
(1)
approx( J ) = max

{
λ,max

j∈ J∗
min

i=1,...,k−1

1

ti+1 − ti
log

‖Ψi+1Ψ
−1
j ξ1, j‖2

‖ΨiΨ
−1
j ξ1, j‖2

}
.

• Computation of λ
(1)
approx( J ):

λ
(1)
approx( J ) = min

{
λ,min

j∈ J∗
max

i=1,...,k−1

1

ti+1 − ti
log

‖Ψi+1Ψ
−1
j ξ2, j‖2

‖ΨiΨ
−1
j ξ2, j‖2

}
.

• Computation of λ
(2)
approx( J ):

λ
(2)
approx( J ) = min

i=1,...,k−1

1

ti+1 − ti
log δ2

(
Ψi+1Ψ

−1
i

)
.

• Computation of λ
(2)
approx( J ):

λ
(2)
approx( J ) = max

i=1,...,k−1

1

ti+1 − ti
log δ1

(
Ψi+1Ψ

−1
i

)
.

4. Finite-time Lyapunov spectrum

In the previous section, we established a general theory for finite-time spectrum with respect to
an arbitrary norm and an arbitrary compact time-set. Now we are dealing with the special case that
the state space is endowed with the Euclidean norm ‖ · ‖2 = ‖ · ‖id and the compact subset J ⊂ I
contains only two time-points, i.e. J = {t−, t+}. Our aim is to show that the finite-time spectrum in
this special case coincides with the finite-time Lyapunov spectrum. We refer the reader to [19] for
an illustration of the importance of finite-time Lyapunov exponents in detecting Lagrangian coherent
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structures on finite-time intervals, e.g. in fluid dynamics and oceanography, cf. also [24,15] and the
references therein.

We do not intend to recall the general theory of classical Lyapunov exponents for nonautonomous
linear differential equations, but to motivate the definition of finite-time Lyapunov spectrum, let us
have a rough look at this classical concept for certain nonautonomous linear differential equations (see
e.g. [1,18,22] for more details on so-called regular systems). Consider system (1) on the unbounded
interval I = [0,∞). Let the following d × d matrix

Λ := lim
t→∞
(
Φ(t,0)�Φ(t,0)

) 1
2t

exist. Then the classical Lyapunov exponents are the logarithms of the eigenvalues of Λ. The set of all
Lyapunov exponents is called Lyapunov spectrum.

As a possible adaptation of the concept of Lyapunov exponents to ODEs (1) on a compact time-set
I = [t−, t+], the finite-time Lyapunov exponents can be defined as the numbers in the set

ΣFTLE,[t−,t+](A) :=
{

1

t+ − t−
log

√
λ: λ ∈ σ

(
Φ(t+, t−)�Φ(t+, t−)

)}
, (21)

which we call the finite-time Lyapunov spectrum of (1) on the interval I . For precursors of the finite-
time Lyapunov spectrum ΣFTLE,[t−,t+](A) see e.g. [20,16] for the largest and the smallest finite-time
Lyapunov exponent, formulas (8) and (9) in [15] and the numerical approach in [17].

Remark 22. By the fact that eigenvalues depend continuously on the entries of matrices, we obtain
that for t+ → ∞ the finite-time Lyapunov spectrum ΣFTLE,[t−,t+](A) tends to the classical Lyapunov

spectrum provided that the limit limt→∞(Φ(t,0)�Φ(t,0))
1
2t exists.

An alternative approach to Lyapunov spectrum is based on the fact that the maximal growth rate
of a k-dimensional infinitesimal volume is the k-th Lyapunov exponent (see e.g. [2,25]). In this section,
we prove this analog relation between finite-time maximal growth rate and the finite-time Lyapunov
spectrum defined as in (21). To formulate and prove this result, we consider system (1) on an in-
terval I ⊇ [t−, t+] and compute explicitly the maximal and minimal growth rates with respect to
J = {t−, t+}.

Proposition 23. Consider system (1) on the interval I . Suppose thatRd is endowed with the standard Euclidean
norm and J = {t−, t+} ⊂ I . Let δn < · · · < δ1 be the singular values of Φ(t+, t−) and d j the multiplicities of δ j ,
j ∈ {1, . . . ,n}. Then for all j ∈ {1, . . . ,n} we have

λ(k)( J ) = 1

t+ − t−
log δ j for all

j−1∑
=1

d < k �
j∑

=1

d, (22)

and

λ(k)( J ) = 1

t+ − t−
log δ j for all

n∑
= j

d � k >

n∑
= j+1

d. (23)

Proof. Let Φ(t+, t−) = V DU be a singular value decomposition, i.e. U , V are orthogonal matrices
in R

d×d and

D = diag(δ1, . . . , δ1, δ2, . . . , δ2, . . . , δm, . . . , δm).
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Let k ∈ {1, . . . ,d} and j ∈ {1, . . . ,m} satisfy that
∑ j−1

=1 d < k �
∑ j

=1 d . Our aim is to show that
λ(k)( J ) = 1

t+−t− log δ j . For this purpose, we set X := span{U−1e1, . . . , U−1ek}, where {e1, . . . , ed} de-

notes the standard basis of Rd . By virtue of Remark 6, we get

λ( J , X) = 1

t+ − t−
inf

ξ∈X∩Sd−1
log
∥∥Φ(t+, t−)ξ

∥∥= 1

t+ − t−
inf

ξ∈X∩Sd−1
log‖DUξ‖.

For each ξ ∈ X ∩ Sd−1, we have Uξ =∑k
=1 αe for some α1, . . . ,αk ∈ R and

∑k
i=1 α2

i = 1. Hence,
we have

log‖DUξ‖ = log

√√√√√δ2
1

d1∑
i=1

α2
i + δ2

2

d1+d2∑
i=d1+1

α2
i + · · · + δ2

j

k∑
i=d1+···+d j−1+1

α2
i

� log δ j .

Therefore, λ(k)( J ) � λ( J , X) � 1
t+−t− log δ j . Now let Y ∈ Gk,d . Then, M := Y ∩ span{U−1ed, . . . ,

U−1ed1+···+d j−1+1} �= {0}. We choose ξ ∈ M ∩ Sd−1 such that Uξ = ∑d
i=d1+···+d j−1+1 αiei with∑d

i=d1+···+d j−1+1 α2
i = 1. Similar to the above estimate, we get log ‖DUξ‖ � log δ j and hence λ(k)( J ) �

1
t+−t− log δ j . So (22) is proved. Similarly, we also have (23) and the proof is complete. �

Now we are in a position to state and prove that the general notion of finite-time spectrum de-
veloped with respect to the set containing only the starting and ending times coincides with the
finite-time Lyapunov spectrum. It is an improvement of the spectral theorem given in [21, Theo-
rem 4.13].

Theorem 24. Consider system (1) on an interval I ⊆ R. Suppose that Rd is endowed with the standard Eu-
clidean norm and J = {t−, t+} ⊂ I . Let δn < · · · < δ1 denote the singular values of Φ(t+, t−). Then

Σ J (A) = ΣFTLE,[t−,t+](A) =
{

1

t+ − t−
log δ1, . . . ,

1

t+ − t−
log δn

}
.

Proof. Let Λ := {i0, . . . , in}, i0 < · · · < in, be the set of all indices j ∈ {0, . . . ,d} satisfying λ( j)( J ) <

λ(d− j)( J ). According to Proposition 23, we obtain that

Λ = {0,dn,dn + dn−1, . . . ,dn + · · · + d1},

which together with Theorem 10 implies that

Σ J (A) = [λ(d), λ(i1)
]∪ [λ(d−i1), λ(i2)

]∪ · · · ∪ [λ(d−in−1), λ(in)
]

=
{

1

t+ − t−
log δ1, . . . ,

1

t+ − t−
log δn

}
,

where we omitted the dependency of the extremal growth rates on J for simplicity. On the other
hand, using the fact that

σ
(
M�M

)= {δ2: δ is a singular value of M
}
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and (21) we have

ΣFTLE,[t−,t+](A) =
{

1

t+ − t−
log δ1, . . . ,

1

t+ − t−
log δn

}
,

which completes the proof. �
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